Percolation model with continuously varying exponents
نویسندگان
چکیده
منابع مشابه
Percolation model with continuously varying exponents.
This work analyzes a percolation model on the diamond hierarchical lattice (DHL), where the percolation transition is retarded by the inclusion of a probability of erasing specific connected structures. It has been inspired by the recent interest on the existence of other universality classes of percolation models. The exact scale invariance and renormalization properties of DHL leads to recurr...
متن کاملHybrid Percolation Transition in Cluster Merging Processes: Continuously Varying Exponents.
Consider growing a network, in which every new connection is made between two disconnected nodes. At least one node is chosen randomly from a subset consisting of g fraction of the entire population in the smallest clusters. Here we show that this simple strategy for improving connection exhibits a more unusual phase transition, namely a hybrid percolation transition exhibiting the properties o...
متن کاملContinuously Varying Critical Exponents Beyond Weak Universality
Renormalization group theory does not restrict the form of continuous variation of critical exponents which occurs in presence of a marginal operator. However, the continuous variation of critical exponents, observed in different contexts, usually follows a weak universality scenario where some of the exponents (e.g., β, γ, ν) vary keeping others (e.g., δ, η) fixed. Here we report ferromagnetic...
متن کاملContinuously Varying Exponents in a Sandpile Model with Dissipation Near Surface
We consider the directed Abelian sandpile model in the presence of sink sites whose density ft at depth t below the top surface varies as c t . For χ > 1 the disorder is irrelevant. For χ < 1, it is relevant and the model is no longer critical for any nonzero c. For χ = 1 the exponents of the avalanche distributions depend continuously on the amplitude c of the disorder. We calculate this depen...
متن کامل0 Continuously varying exponents in a sandpile model with dissipation near surface
We consider the directed Abelian sandpile model in the presence of sink sites whose density ft at depth t below the top surface varies as c t . For χ > 1 the disorder is irrelevant. For χ < 1, it is relevant and the model is no longer critical for any nonzero c. For χ = 1 the exponents of the avalanche distributions depend continuously on the amplitude c of the disorder. We calculate this depen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2013
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.88.042122